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Now 

exp [ - l n  (1 + n ' +  m')] 
n'=0 m'=0 

[ s - ( n ' +  m')/a]2 
- [ V o +  Wo(n'+m')2] 2 -  (h+l ) fn  

h=O 

where h is an integer and 

I s -  ( n '+  m') /a]  2 
f.,+,., = exp [ - l n  (l + n' + m')] 

[ Vo + Wo(n' + m')2] 2" 

However, (h + 1) exp [ - In  ( I+  h)] = 1. Hence, 

[b(s)12=L~sin27rNaSexP(sin 27ras - ~o4"/r2 ) s2 

[ x __ exp ( V  o o+ Woh2)2.]" 
h=0 
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Abstract Introduction 

Nonsystematic absences along certain reciprocal- 
lattice directions have been observed in the diffraction 
patterns of the macroscopic single crystals of various 
materials, both in our laboratory and in the literature. 
These extinctions are not space-group related nor are 
they the result of secondary scattering. Incorporation 
of the lowest-order anharmonic interaction terms, 
cubic and quartic in displacement, into the Hamil- 
tonian of the molecular lattice, has made it possible 
to give a complete interpretation of these observa- 
tions. A general intensity distribution was deduced 
with the assumption of elastic scattering. The final 
result provides new insight into the interaction of 
molecular units within a crystal and reveals new 
avenues for the solution of some unsolved crystal 
structures. A general procedure for the application 
of the required correction term to the intensity distri- 
bution is outlined, along with appropriate examples. 

* Present address: GTE Laboratories, Incorporated, 40 Sylvan 
Road, Waltham, MA 02254, USA. 

The functional dependence of the line shape in a 
diffraction pattern on the nature of the interaction 
potential among the scattering entities has been estab- 
lished (Thakur, Tripathy & Lando, 1985). It has been 
shown that the monotonic decrease in the peak 
intensities is a consequence of the harmonic part of 
the interaction potential (Debye-Waller effect). The 
changes in the line shape, on the other hand, were 
generally interpreted to be a function of the nonhar- 
monic aspect of the interaction potential. The para- 
crystallinity, finite crystal size and presence of lattice 
strain were investigated using a very general form of 
the potential. 

It has been observed in our laboratory that certain 
macroscopic crystalline systems have nonsystematic 
absences in their diffraction patterns, although 
intensities calculated from their crystal structures 
should be observed. Similar observations, not accoun- 
ted for in detail, were made by various other workers 
(Akiyama, Tanaka & Iitaka, 1970; Shannon & Katz, 
1970; Srivastava & Przybylska, 1970; Mazhar-ul- 
Haque & Caughlan, 1970; Torii & Iitaka, 1970). In 
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this paper is developed a theory dealing with nonsys- 
tematic absences in the diffraction pattern of rela- 
tively large disorder-free single crystals. These non- 
systematic absences are not space-group related, nor 
are they the results of secondary scattering. These 
unusual extinctions can be accounted for if certain 
higher-order terms are included in the interaction 
potential. Besides these nonsystematic absences, 
some specific irregularities in the intensity distribu- 
tion have been observed. Some zones of data may be 
very weak and diffuse, whereas others may remain 
relatively sharp. The crystal structure analysis in such 
cases may become impossible or at least very approxi- 
mate, based on some ad hoc assumption (Com~s, 
Lambert & Guinier, 1970). This problem can be re- 
solved without any such approximation if a general 
anharmonicity in three dimensions is incorporated 
into the potential. Consequently, the intensity distri- 
bution can be interpreted and the structure analysis 
may also become much easier if the relevant correc- 
tion is applied. In other words, this analysis may very 
well provide a key to the solution of some crystal 
structures that otherwise may remain unsolved. The 
required corrections in such cases for both nonsys- 
tematic extinctions and anomalous intensity distribu- 
tidn will be discussed in detail along with appropriate 
examples. 

Theory 
An effective density of a molecular lattice is generated 
by convoluting the electron density of the individual 
molecule pro(r) with the disposition function A(r) 
(Vainshtein, 1966). The disposition function A(r) for 
a molecular lattice can be expressed as 

N 
A(r) = E a ( r - r j ) ,  (1) 

j = l  

where a(r) is a function of position and depends only 
on the interaction potential. The assumption of a 
Maxwell-Boltzman-type distribution leads to 
(Thakur, Tripathy & Lando, 1985; Torii & Iitaka, 
1970) 

a(r) = L exp [-fly(r)], (2) 

where L is a normalization constant,/3 = 1/kT  and 
v(r) is the interaction potential. The Fourier trans- 
form b(s) of the disposition function A(r) can be 
expressed as (Thakur, Tripathy & Lando, 1984) 

N 
b(s) = L E exp (27r/s • rj)F{exp [-fly(u)]), 

j = l  

u = r - r j .  (3) 

Including only the third- and fourth-order terms over 
and above the harmonic term in the interaction poten- 
tial, the simplest form of the potential can be 
expressed as 

V(U) =½3'0 u2 + gu 3 + f u  4, 

where 3'0 is the coefficient of the harmonic term and 
g and f are parameters related to the specific form 
of anharmonicity. An estimate of these parameters 
can be made from the experimentally observed 
anomalous behavior of the diffraction pattern or, 
more generally, from the crystal structure refinement. 

By substituting back in (2), we obtain 

a(u) = L1 exp [-½70flu2-fl(gu s +fu4)]. 

For small u, 

exp [-/3 (gu 3 +fu4)] -~ 1 - flgu 3 -  flfu 4. 

Hence, 

a(u) = Ll exp (-½3'oflU2)[1 -/3gu 3 -  /3fu4]. 

Now the Fourier transform of a(u) is given by 

27r [ ig 27r 
F[a(u)]= LI ~ofl L 1 H 3 ~  s (3"0/3)3/2 3"112/3 

f 217" ] 
( 3'0/3 )2 1-/4 3'01/2--------~ S 

xexp [-(27r2/3,0/3)] 2, 

where Hn(¢) is the Hermite polynomial of degree n. 

Thus, N 27r 
b(s) = L, ~ exp (27risxj) 

j = l  3"0/3 

×[1 (3"0/3)3/2 H3(¢) 

f ] 
(3'o-/}~2 H4(¢) exp (-¢2/2), 

where ¢ = 2~rs/3"~/2/3, and N is the number of unit 
cells in the crystal domain. Therefore, 

N N 

Ib(s)12= L~ Y'. Y'. exp [2~ris(xj-xk)l 
j = l  k=l  

X3'o/3 1 H4(¢) ( 3'0/3 )2 
g2 

+ ~  H~(¢)} exp (_¢2). 

With lattice periodicity a = xj - x j-1 
N N 

Y'. ~ exp [2.a'is(xj - xk ) ] -  sin2 "n'Nas 
j=  1 k= I sin 2 aras 

Therefore, 
L2sin 2 1rNas 2~r 

Ib(s)12= 
sin 2 ~ras 3"0/3 

x 1 f H4(¢) ( 3'0/3 )2 
g2 H32(¢) ] exp(_¢2)" 
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Finally, the intensity distribution can be expressed as 

i ( s )  = IVm(s)121b(s)l  = 

sin 2 zrNas exp ( - s  c=) 
=[F"(s')[= sin 2 7ras 

I II III 

2~ L~ 1 f H4(~:) 
x 3'o13 (3'o13)2 

g2 H~(~:)}. 

IV 

(4) 

The implications of the first three terms have 
already been explained (Thakur, Tripathy & Lando, 
1984). Specifically, F,,, (s) corresponds to the structure 
factor of the asymmetric units before they are 
assembled into the crystal lattice. The second term is 
the Laue interference function, and for large N it has 
sharp peaks at s = ha*, where a* is the reciprocal- 
lattice parameter, exp (_~:2) is the Debye-Waller or 
temperature factor. Comparing with the commonly 
used isotropic temperature factor, we have 

B / 2  = 417"2/7o13 = 4zr 2 k T~ 3'0. 

However, it is the fourth term that contains the 
intensity information relating to the anharmonic com- 
ponent of the interaction potential. This will be 
described in greater detail in the next section. 

Implication of the anharmonic term 

The anharmonic term in the intensity expression (sub- 
sequently referred to as Ianh) for the special case of 
f = g = 0 reduces to a constant as expected, and results 
relevant to the harmonic crystal lattice are obtained. 
If the potential is chosen to be symmetric, V ( u ) =  
V ( - u ) ,  then g = 0 and hence /ann a s s u m e s  the form 

{ / lanh - -  2~r L~ l - - - L - f  H4(~:) . 
 o13 (3,o13): 

In the special case where 

H4( /~) = ( 3,ofl )2/f, "( a ) 

Ianh = 0. 

Thus, for the reciprocal-lattice vector a* (for which 
-sCo) given by 

2zr 
~o-  .,/io/213 hoa*, (b) 

satisfying condition (a), there will be complete 
extinction of intensity. The Miller index of the vanish- 
ing peak is ho. We infer from condition (a) that two 
independent peaks will be extinct along a reciprocal- 
lattice direction. This result can be easily generalized 

to three dimensions. When the extinction condition 
is not exactly satisfied, skewing of the diffraction 
maxima and other anomalous intensity modulations 
can be expected. 

Another interesting consequence of Ia~h results at 
very high ~: values. For ~:~ oo, H4(~:) also approaches 
oo. Thus, even though the combination of form and 
temperature factors cuts off the intensity at higher 
values of ~: (higher-order reflections), H4(¢) may be 
large enough to result in enhanced intensity. 

In polymeric single crystals with bulky side groups 
(certain polydiacetylenes) and in molecular crystals 
with highly flexible or constrained side groups (non- 
optimally packed), the interaction potential is expec- 
ted to be strongly anharmonic. These anharmonicities 
are anisotropic and the anomalies in the diffraction 
pattern are expected to be anistropic as well. In crys- 
tals of these types, even the use of suitable anisotropic 
temperature factors does not lead to a proper refine- 
ment of the crystal structure against the intensity data. 
The structure refinement in these cases will be imposs- 
ible if one is not aware of the anharmonic terms and 
their consequences. 

One approach to solving the crystal structure in 
systems with strong anharmonicity will be to eliminate 
the anharmonic contribution from the observed data 
and to apply subsequently the usual ideal harmonic 
approximation to arrive at the solution. Thus, the 
corrected intensities /corrected a r e  given by lobs/ lan h. 
However, to begin with, la,h is not known (since g's 
and f ' s  are not known). One should use the general 
expression of intensity l(s) of the form given in (4) 
and use g's and f ' s  along with other parameters as 
variables in the structure refinement process. In the 
following section such a procedure is outlined for a 
specific example. 

Before we begin to discuss an example, let us 
deduce the general intensity distribution in three 
dimensions [generalization of (4)] to look at some 
other specifically important implications of the anhar- 
monic interaction. The general potential in three 
dimensions can be expressed as 

V(u) =½y y u,uj 3,,j + " Y Z u,uju g,j  
i j i j k 

i j k l  

After a Fourier transform, the tensorial force constant 
(3,u) leads to an anisotropic temperature factor. The 
anharmonic coefficients guk and f~jkt, being respec- 
tively the third- and fourth-rank tensors, lead to a 
very complicated general expression of the intensity 
distribution. It becomes fairly difficult to extract any 
useful information. A simple way to get around this 
difficulty without losing any generality is to modify 
the scanning system so that a three-dimensional prob- 
lem reduces to a one-dimensional one. If we scan 
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through each parallel set of planes n(hkl) ( n =  
l, 2, 3 , . . . )  separately, then we can consider vibrations 
only along a direction perpendicular to this set of 
planes. As a result we will be left with a one- 
dimensional problem in which the different planes 
are separated by their corresponding d spacings. In 
the diffraction or the reciprocal space this will be 
performed by considering each set of reflections lying 
along a line passing through the origin separately. 
The resulting intensity distribution subsequently 
takes the following form, obtained by some minor 
modifications of (4) (replacement of a by dhk I etc.). 

I(s) = LE[F,,(s)[ E SinE 7rSdhkffexp [--(4erE/),fl)2] 
s i n  2 ~'dhkiS 

_ _ _  + gE H~(~)/ S H4(~) ] 2 ×{[l 
J 

4°. 

= L2IF~(s)I2 sin 2 ~rNdhk,S 
sin 2 dhkl s 

x exp [ -  (47r2/y/3 )S2]/a.h(S). (S) 

In this equation the term Ianh(S) contains all the 
contributions from the anharmonic vibrations. It is 
equal to one (as it should be) when the anharmonic 
coefficients (g, f )  are zero or negligible. The constant 
factor L E should be chosen properly so that the 
relation 

I(s) ds= ~ p(r) dr 
all space all space 

(Parseval's theorem) is satisfied. In other words, the 
total scattered or diffracted intensity should be a 
constant quantity. 

This is true for any elastic scattering. Now let us 
consider the general case when g, f #  0; therefore 
Ianh ~ 1 but a function of the reciprocal-lattice vector 
s. Since the effective intensity I(s) is proportional to 
/anh(S) [(5)], the variation of lanh(S) with s will lead 
to a modification of the distribution of the effective 
intensity l(s). Thus some of the reflections may be 
anomalously intense or weak, depending on the value 
of lanh(S) at that point in reciprocal space. However, 
to maintain the conservation of the total intensity, 
the loss (gain) of certain reflections will exactly equal 
the gain (loss) at certain other points. Consequently 
a considerable amount of diffuse background around 
some reflections may be inevitable. In summary, it 
will result in a very irregular intensity distribution in 
diffraction space. An example of such a diffraction 
pattern [single crystal poly(5,7-dodecadiyne-l,12- 
bisphenylurethane)] is given in Fig. l, where the 0k0 
reflections are reasonably sharp and strong but the 
001 reflections are weak and highly diffuse. The corre- 
sponding crystal structure has been solved only in 
two dimensions (ab projection) but because of these 

Table 1. Comparison of the calculated, observed and 
corrected intensities of some of the OkO reflections for 

poly-TCDU (phase II) 

h k l lcalc lob  s I . . . . . . .  d 

0 9 0 18243 17937 17937 
--'}0 10 0 8040 165 '~" 8250 

0 !! 0 3250 1047 3490 
---~0 12 0 1205 150 ~ 1666 

0 13 0 410 1993 333 
0 14 0 128 3186 80 

The 090 reflection has been used for scaling. 

anomalies in the upper-level (L # 0) data the three- 
dimensional structure is not yet solved. A novel 
attempt at its solution is presently being made in the 
light of the anharmonic interaction and the results so 
far are quite promising. In the following section this 
will be discussed in greater detail. 

Corrections for anharmonic effects 

1. Nonsystematic extinctions 

Table 1 shows the calculated, observed and correc- 
ted intensities of some reflections along the [0k0] 
direction of a phase II poly(TCDU) crystal. The 
intensity data were collected using a Picker FACS 1 
four-circle diffractometer. The unit cell is monoclinic 
and the space group is PE/a (unique axis c). The 
calculated intensities are obtained from a two- 
dimensional (ab projection) crystal structure analy- 
sis, as previously stated. A three-dimensional refine- 
ment could not be done because of the disorder along 
the c axis of the crystal. 

b* C* 

/ / 

0 

..p. 

Z 

Fig. 1. Weissenberg pho tograph  of  po ly -TCDU (phase II),  show- 
ing Okl reflections. The 0k0 reflections are sharp, whereas the 
001 reflections are weak and diffuse. 
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No systematic absences are observed in the diffrac- 
tion pattern along the [0k0] direction. Yet the ob- 
served intensities of the 0,10,0 and 0,12,0 reflections 
are extremely low and may be approximated as zero 
with respect to the others (for the sake of simplicity). 
Moreover, the higher-order reflection 0,14,0 is con- 
siderably higher in observed intensity than in the 
calculated intensity. Thus the observed data are very 
clearly indicative of the existence of anharmonicity. 
Since there are two observable extinctions along the 
same reciprocal-lattice line, it is possible to calculate 
the anharmonic parameter uniquely. Specifically: 

H4(~Co) = 1/o" (condition a) 

with the explicit representation of H4(~:o) 

16~:4-48~:2o + 12= 1/o- 

~ : o  = ½13 + (6+ 1/4tr)~/2] 1/2. 

The two vanishing peaks are at 

ThUS, 

~l  = 10b*, 62 = 12b*. 

[3+(6+1/4o')~/2] ~/2 12 

[ 3 - ( 6 +  1/4o-)~/2] ~/2- 10' 

Hence, 

o" = -0.0438. 

Ia,h = [front factor][ 1 + 0.0438( 16~ 4 - 48~ :2 + 12) ]2 

sc=0.113k. 

This expression can now be used to calculate the 
corrected intensities listed in the last column of Table 
1. The excellent agreement between the calculated 
and corrected intensities is obvious. It should be 
pointed out, however, that if the refinement were 
carried out in an iterative fashion the agreement 
would improve even further. 

a reasonable solution in two dimensions was obtain- 
able using only the hkO data, a complete solution in  
three dimensions was found to be impossible. The 
minimum residual at this point converged at 0.35 and 
no appreciable change was observed on further vari- 
ation of the structural parameters. It was quite clear 
that the existing irregularities in the upper-level 
intensities were responsible for this failure of struc- 
tural refinement. The irregularities were subsequently 
found to be a consequence of the anisotropic nature 
of the anharmonic term lanh(hkl). Polymer molecules 
in general have higher mobility along the chain direc- 
tion because it is easier for a long chain to slide 
lengthwise than in the transverse direction. Thus the 
anharmonic content along the chain direction is 
higher than in the other directions. As a result 
Ianh(hgl) to a good approximation becomes depen- 
dent on L only. Therefore, in the subsequent calcula- 
tion of the structure of poly(TCDU) two additional 
variable parameters (g, f )  were refined and a sharp 
drop of the residual from 0.35 to 0.23 was observed. 
The agreement improved by 12%, indicating the 
importance of the anharmonic correction. A reason- 
able solution in three dimensions was approached. 
To arrive at a more complete solution two additional 
factors need to be considered: (1) the monomer- 
polymer conversion in poly(TCDU) may not be com- 
plete (100%); therefore a monomer contribution 
should also be incorporated in the structure-factor 
calculation. (2) The monomer mobility should be 
different from the polymer chain mobility; therefore 
two additional anharmonic parameters (g, f )  need to 
be refined. Once these factors are properly taken care 
of, the refinement should be complete. This work is 
now under way and the results will be reported 
shortly. In conclusion, anharmonic interaction has 
quite a significant consequence on the intensity distri- 
bution and an appropriate correction is indispensable 
to arrive at the solution of some structures. 

2. Irregular distribution of  intensity 

The general expression for the intensity of a reflec- 
tion hkl is given by 

I ( hkl) = N2 L21Fm ( hkl)l 2 exp [-(4~r2/~,fl) 

× (1/d2hkl) ] Ianh(hkl). 

The term Ianh(hkl) leads to a diffuse background 
associated with a modification of the peak intensities 
as discussed in the earlier section with an experi- 
mental example of the diffraction pattern of 
poly(TCDU). As indicated by the diffraction pattern, 
the upper-level reflections (00L, L > 0 )  were much 
disordered in their intensities. This irregularity was 
more clearly observed when a complete set of data 
for the intensities was collected using a Picker FACS 1 
four-circle diffractometer. Initially, a structure calcu- 
lation was tried ignoring these irregularities. Although 
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